Vectors and Matrices in R

Arnab Maity
NCSU Department of Statistics ~ 5240 SAS Hall ~ 919-5151937 ~ amaity[at]ncsu.edu

Contents

Introduction 2

Vectors 2

Addition and subtraction of two vectors 3
Vector multiplication 4
Norm/Length of a Vector 5
Orthogonal vectors 5
Matrices 6
Transpose 7
Addition and subtraction 7
Equality of two matrices 9
Multiplication 9
Some special matrices 11
Rank of a matrix 12
Matrix inversion 12

Introduction

Let us consider the first five rows and the first two columns of the iris dataset in R.

```
iris[1:5, 1:2]
## Sepal.Length Sepal.Width
## 1 5.1 3.5
## 2 4.9 3.0
## 3 4.7 3.2
## 4 4.6 3.1
## 5 5.0 3.6
```

The first column containing five numbers is an example of a vector. The entire table with five rows and two columns is an example of a 5×2 matrix. These data structures are very common is both multivariate and longitudinal data analysis.

Vectors

A vector is an array of numbers. Specifically, we will write

$$
\boldsymbol{x}=\left(\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right)
$$

and call it a column vector. We often write $x \in \mathbb{R}^{p}$. Similarly, a row vector is written as

$$
x^{T}=\left(x_{1}, x_{2}, \ldots, x_{p}\right)
$$

Note that the notation x^{T} denotes "transpose" of x^{1}
In our iris data example above, consider the first column of the table (corresponding to Sepal. Length). This is an example of a 6×1 (column) vector

$$
\boldsymbol{x}=\left(\begin{array}{l}
5.1 \\
4.9 \\
4.7 \\
4.6 \\
5.0
\end{array}\right) \text {. }
$$

To create this vector in R, we can use the command:

```
x = c(5.1, 4.9, 4.7, 4.6, 5)
X
```

\#\# [1] 5.1 4.94 .74 .65 .0
Even though R prints the vector x using a single line but it still considers x as a column vector. To see this, try to view x in a matrix form using as.matrix():

```
as.matrix(x)
## [,1]
## [1,] 5.1
## [2,] 4.9
## [3,] 4.7
## [4,] 4.6
## [5,] 5.0
```

If we take the transpose using t () function, we obtain a row vector: ${ }^{2}$

t(x)

```
## [,1] [,2] [,3] [,4] [,5]
## [1,] 5.1 4.9 4.7 4.6 5
```


Addition and subtraction of two vectors

For two vectors $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{p}$, the sum is defined as ${ }^{3}$

$$
\boldsymbol{a}+\boldsymbol{b}=\left(\begin{array}{c}
a_{1}+b_{1} \\
a_{2}+b_{2} \\
\vdots \\
a_{p}+b_{p}
\end{array}\right)
$$

that is, a vector of same dimension as of a and b, where each element is the sum of corresponding elements of \boldsymbol{a} and \boldsymbol{b}.

Consider the two vectors as follows. ${ }^{4}$

```
a = c(5.1, 4.9, 4.7, 4.6, 5)
b = c(3.5, 3, 3.2, 3.1, 3.6)
```

Their sum is:
$a+b$
\#\# [1] 8.67 .97 .97 .78 .6

Their difference is:
${ }^{2}$ What happens when you take transpose of a row vetor? Try it here.
${ }^{3}$ Similarly, the difference is defined as

$$
\boldsymbol{a}-\boldsymbol{b}=\left(\begin{array}{c}
a_{1}-b_{1} \\
a_{2}-b_{2} \\
\vdots \\
a_{p}-b_{p}
\end{array}\right)
$$

${ }^{4}$ Note that to add (or subtract) \boldsymbol{a} and \boldsymbol{b}, the two vectors have to have the same number of elements.
a - b
\#\# [1] 1.61 .91 .51 .51 .4

Vector multiplication

A vector \boldsymbol{a} can be multiplied by a scalar k by simply multiplying each element of \boldsymbol{a} by k :

$$
k \boldsymbol{a}=k\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{p}
\end{array}\right)=\left(\begin{array}{c}
k a_{1} \\
k a_{2} \\
\vdots \\
k a_{p}
\end{array}\right)
$$

In R, we can use the $*$ operator: 5
${ }^{5}$ We can similarly divide a vector by a scalar by using the / operator.
a
\#\# [1] 5.14 .94 .74 .65 .0

2 * a
\#\# [1] 10.29 .89 .49 .210 .0

Multiplication between two vectors is a little more involved. Here we need to define the inner product of two vectors. For two vectors $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{p}$, the inner product is defined as:

$$
\langle\boldsymbol{a}, \boldsymbol{b}\rangle=\boldsymbol{a}^{T} \boldsymbol{b}=\left(\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{p}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{p}
\end{array}\right)=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{p} b_{p}=\sum_{j=1}^{p} a_{j} b_{j}
$$

Note that the result is a scalar.
As an example, suppose $\boldsymbol{a}^{T}=(1,0,2,5)$ and $\boldsymbol{b}=\left(\begin{array}{l}2 \\ 3 \\ 1 \\ 6\end{array}\right)$. Then we
have
$\boldsymbol{a}^{T} \boldsymbol{b}=\left(\begin{array}{llll}1 & 0 & 2 & 5\end{array}\right) \times\left(\begin{array}{l}2 \\ 3 \\ 1 \\ 6\end{array}\right)=(1 \times 2)+(0 \times 3)+(2 \times 1)+(5 \times 6)=34$

In R, we can use the $\% * \%$ operator to compute the inner product (or matrix multiplication in general). In this example ${ }^{6}$
$a<-c(1,0,2,5)$
$b<-c(2,3,1,6)$
$t(a) \% * \%$
\#\# [,1]
\#\# [1,] 34

Norm/Length of a Vector

The length of a vector is defined as its distance from the vector $\mathbf{0}$, the origin. It is defined as

$$
\|x\|=\langle x, x\rangle^{1 / 2}=\left(x_{1}^{2}+\ldots+x_{p}^{2}\right)^{1 / 2} .
$$

In other words, the length of a vector x is the square root of the inner product of x with itself.

Try to compute length of a defined before: ${ }^{7}$

```
sqrt(sum(a^2))
```

```
## [1] 5.477226
```

If a vector has norm one (unity), that is, $\|x\|=1$, then the vector is called unit vector.

Orthogonal vectors

Two vectors \boldsymbol{a} and \boldsymbol{b} (that have the same number of elements) are said to be orthogonal if $\boldsymbol{a}^{T} \boldsymbol{b}=0$. In other words, two vectors are orthogonal if their inner product is zero.

Recall the vectors a and b defined before. Are they orthogonal? Are they orthonormal?
${ }^{6}$ Note: Be careful to use $\% * \%$. Be sure to put the \% signs properly. Just using * without the \% signs would give you elementwise product:

$$
\boldsymbol{a} * \boldsymbol{b}=\left(\begin{array}{c}
a_{1} b_{1} \\
a_{2} b_{2} \\
\vdots \\
a_{p} b_{p}
\end{array}\right)
$$

In matrix algebra this is referred to as Hadamard product.

[^0]
Matrices

Matrices are array of numbers. In the example in the Introduction section we defined the matrix

```
## Sepal.Length Sepal.Width
## 1 5.1
    3.5
## 2 4.9 3.0
## 3 4.7 3.2
## 4 4.6 3.1
## 5 5.0
```

This is an example of a 5×2 matrix. ${ }^{8}$ We can write this matrix as

$$
\mathbf{M}=\left(\begin{array}{ll}
5.1 & 3.5 \\
4.9 & 3.0 \\
4.7 & 3.2 \\
4.6 & 3.1 \\
5.0 & 3.6
\end{array}\right)
$$

To create the matrix \mathbf{M} in R , and then to print, we use the following commands: 9

```
M = cbind(c(5.1, 4.9, 4.7, 4.6, 5), c(3.5, 3, 3.2, 3.1, 3.6))
```

M

```
## [,1] [,2]
## [1,] 5.1 3.5
## [2,] 4.9 3.0
## [3,] 4.7 3.2
## [4,] 4.6 3.1
## [5,] 5.0 3.6
```

This way of creating matrix is essentially taking each column and then joining them together.

One could also try the command matrix(). ${ }^{10}$

```
mydata = c(5.1, 4.9, 4.7, 4.6, 5, 3.5, 3, 3.2, 3.1, 3.6)
M = matrix(mydata, nrow = 5, ncol = 2, byrow = F)
```

M

```
## [,1] [,2]
## [1,] 5.1 3.5
## [2,] 4.9 3.0
## [3,] 4.7 3.2
## [4,] 4.6 3.1
## [5,] 5.0 3.6
```

${ }^{9}$ The command cbind () takes the column vectors, and puts them side by side. We can also use rbind () to concatinate row by row.
${ }^{10}$ By default this command fills the matrix by columns. One could try to fill the matrix by rows by including the argument byrow = TRUE in the call to matrix().
${ }^{8}$ The size of the matrix \mathbf{M} is 5×2 as it has 5 rows and 2 columns. In general, a matrix can have any number of rows and columns.

One could also read the matrix into R from an external file:

```
M = read.table(file="mydata.txt", header=FALSE)
```

where mydata.txt is an external file containing the values of the matrix with no column names (and hence header=FALSE). If column names are included in the file on top of each column, then use header=TRUE in the argument.

Transpose

Transposing matrices involves turning the first column into the first row, second column into second row and so on. We write \mathbf{M}^{T} as the transpose of \mathbf{M}.

We can use t () to take a transpose in R :

```
Mt = t(M)
Mt
## [,1] [,2] [,3] [,4] [,5]
## [1,] 5.1 4.9 4.7 4.6 5.0
## [2,] 3.5 3.0
```

The dimensions of any matrix can be checked with dim().

```
dim(M)
```

\#\# [1] 52
$\operatorname{dim}(M t)$

```
## [1] 2 5
```

We can also access certain elements of the matrix. For example \mathbf{M}_{12} denotes the element of \mathbf{M} which is in the 1st row and 2nd column of the matrix:

```
M[1, 2]
```

```
## [1] 3.5
```


Addition and subtraction

Addition and subtraction of matrices can be done if the matrices have the same size. The sum of two matrices A and B (of same size) is another matrix (of the same size) where each element is the sum of the corresponding elements of A and B.

```
A = cbind(c(0.71, 0.61, 0.72, 0.83, 0.92), c(0.63, 0.69, 0.77,
        0.8, 1))
A
## [,1] [,2]
## [1,] 0.71 0.63
## [2,] 0.61 0.69
## [3,] 0.72 0.77
## [4,] 0.83 0.80
## [5,] 0.92 1.00
B = matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), 5, 2)
B
```

\#\# [,1] [,2]
\#\# [1,] 1 6
\#\# [2,] 27
\#\# [3,] 3
\#\# [4,] 4
\#\# [5,] 510
\# Summing two matrices
$A+B$
\#\# [,1] [,2]
\#\# [1,] 1.716 .63
\#\# [2,] 2.61 7.69
\#\# [3,] 3.728 .77
\#\# [4,] 4.839 .80
\#\# [5,] 5.9211 .00
\# Subtracting
A - B
\#\# [,1] [,2]
\#\# [1,] -0.29 -5.37
\#\# [2,] -1.39 -6.31
\#\# [3,] -2.28-7.23
\#\# [4,] -3.17-8.20
\#\# [5,] -4.08-9.00

Matrix addition satisfies the usual commutative and associative laws.

Commutative law: $\quad \mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
Associative law: $\quad \mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C}$

Equality of two matrices

Two matrices \boldsymbol{A} and \boldsymbol{B} are equal, that is, $\boldsymbol{A}=\boldsymbol{B}$ if any only if:

1. A and B have the same size, and
2. the (i, j)-th element of A is equal to the $i j$ th element of A for all $1 \leq i \leq r$ and $1 \leq j \leq n$.

Therefore the following two zero matrices are not equal:

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \neq\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Multiplication

Multiplication of a matrix by a scalar is done by simply multiplying every element in the matrix by the scalar. So if $k=0.4$, and

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 5 & 8 \\
1 & 2 & 3
\end{array}\right)
$$

we can calculate $k \mathbf{A}$ as:

$$
k \mathbf{A}=0.4 \times\left(\begin{array}{lll}
1 & 5 & 8 \\
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{rrr}
0.4 & 2 & 3.2 \\
0.4 & 0.8 & 1.6
\end{array}\right)
$$

Matrix multiplication however follows vector multiplication, and therefore does not follow the same rules as basic multiplication. To multiply two matrices A and B, one must first check that the number of columns in A is exactly the same as the number of rows in B. Otherwise, we can not multiply these two matrices. More generally,

$$
A_{m \times n} \times B_{n \times p}=C_{m \times p}
$$

Let A be of size $m \times n$; represent A using its row vectors $a_{1}^{T}, a_{2}^{T}, \ldots, a_{m}^{T}$. Let B be of size $n \times p$; represent B using its columns vectors $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{p}$. The multiplication operation for matrices is defined as:

$$
\mathbf{A B}=\left(\begin{array}{c}
a_{1}^{T} \\
a_{2}^{T} \\
\ldots \\
a_{m}^{T}
\end{array}\right)\left(\begin{array}{llll}
b_{1} & b_{2} & \ldots & b_{p}
\end{array}\right)=\left(\begin{array}{cccc}
a_{1}^{T} b_{1} & a_{1}^{T} b_{2} & \ldots & a_{1}^{T} b_{p} \\
a_{2}^{T} b_{1} & a_{2}^{T} b_{2} & \ldots & a_{2}^{T} b_{p} \\
\vdots & \vdots & & \vdots \\
a_{m}^{T} b_{1} & a_{m}^{T} b_{2} & \ldots & a_{m}^{T} b_{p}
\end{array}\right)
$$

Thus, (i, j)-th element of $\mathbf{A B}$ is the inner product of i-th row of A and j-th column of \boldsymbol{B}.

Consider the following example.

```
A = cbind(c(0.71, 0.61, 0.72, 0.83, 0.92), c(0.63, 0.69, 0.77,
        0.8, 1))
A
## [,1] [,2]
## [1,] 0.71 0.63
## [2,] 0.61 0.69
## [3,] 0.72 0.77
## [4,] 0.83 0.80
## [5,] 0.92 1.00
B = matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), 2, 5)
B
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 3 5 7 0
## [2,] 2 4 4 6 8
```

Here A has 2 columns and B has two rows, and hence we can multiply A with B. In R, we only need to use the $\% * \%$ operator to ensure we are getting matrix multiplication:

```
C = A %*% B
C
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.97 4.65 7.33 10.01 12.69
## [2,] 1.99 4.59 7.19 9.79 12.39
## [3,] 2.26 5.24 8.22 11.20 14.18
## [4,] 2.43 5.69 8.95 12.21 15.47
## [5,] 2.92 6.76 10.60 14.44 18.28
```

Just to check, look at \boldsymbol{C}_{23}, the $(2,3)$-th element of \boldsymbol{C}.

$$
C_{23}=7.19=(0.61,0.69)\binom{5}{6}=(5 \times 0.61)+(6 \times 0.69)=7.19 .
$$

You will get an error message if you multiply non-conformable matrices. ${ }^{11}$

```
B %*% t(A)
```

```
## Error in B %*% t(A): non-conformable arguments
```

Unlike addition, matrix multiplication is not commutative:

[^1](non-commutative) $\quad \mathbf{A B} \neq \mathbf{B A}$
Associative law $\quad \mathbf{A}(\mathbf{B C})=(\mathbf{A B}) \mathbf{C}$
The distributive laws of multiplication over addition still apply.
\[

$$
\begin{aligned}
& \mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \\
& (\mathbf{A}+\mathbf{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C}
\end{aligned}
$$
\]

We have the following rules for transposes.

$$
\begin{array}{r}
(\mathbf{A}+\mathbf{B})^{T}=\mathbf{A}^{T}+\mathbf{B}^{T} \\
(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}
\end{array}
$$

Some special matrices

There are some matrices which have particular structure or properties of interest. We will use the following matrices often in this course.
(a) Identity Matrix: An identity matrix (of any size), is a diagonal matrix with 1 as each diagonal entry. For example, \mathbf{I}_{3} is defined as

$$
\mathbf{I}_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

```
diag(3)
```

\#\#	[,1]	$[, 2]$	$[, 3]$
\#\# [1,]	1	0	0
\#\# [2,]	0	1	0
\#\# [3,]	0	0	1

(b) Ones: We also need to define a vector of ones; $\mathbf{1}_{p}$, a $p \times 1$ matrix containing only the value 1 . There is no inbuilt function in $\{R\}$ to create this vector, it is easily added:
ones <- rep(1, 3)
ones
\#\# [1] 111
(c) Zero matrix: $\mathbf{0}$ denotes the zero matrix, a matrix of zeros. Unlike the previously mentioned matrices this matrix can be any shape you want. So, for example:

$$
\mathbf{0}_{\mathbf{2} \times \mathbf{3}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

```
matrix(0, nrow = 2, ncol = 3)
## [,1] [,2] [,3]
## [1,] 0 0 0
## [2,] 0 0 0
```

(d) Diagonal Matrices: A diagonal matrix is a square matrix in which all the "off diagonal" elements are zero. An example of diagonal matrix is

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

```
diag(c(1:3))
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 2 0
## [3,] 0 0 3
```

(e) Symmetric matrices: A matrix \mathbf{A} is called a symmetric matrix if $A_{i j}=A_{j i}$, that is, $\mathbf{A}=\mathbf{A}^{T}$. As a consequence, symmetric matrix has to square, that is, they has to have the same number of rows and columns. For example, the following is a symmetric matrix:

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right)
$$

Rank of a matrix

Rank denotes the number of linearly independent rows or columns. For example:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

is 3×3 matrix with rank 2 since the first column can be found from the other two columns as $a_{1}=a_{2}+a_{3}$.

If all the rows and columns of a square matrix are linearly independent it is said to be of full rank and non-singular. Otherwise it is said to be singular.

Matrix inversion

Suppose \boldsymbol{A} is a non-singular (full rank) $p \times p$ matrix. There is a unique matrix \boldsymbol{B} such that $\boldsymbol{A B}=\boldsymbol{B} \boldsymbol{A}=\boldsymbol{I}_{p}$. We call the matrix \boldsymbol{B} the inverse of A, and denote by $A^{\mathbf{- 1}}$. A singular matrix has no inverse.

In R, we use solve() to invert a matrix.

```
D <- matrix(c(5, 3, 9, 6), 2, 2)
```

D
\#\# [,1] [,2]
\#\# [1,] 5
\#\# [2,] 36
solve(D)
\#\# [,1] [,2]
\#\# [1,] 2 -3.000000
\#\# [2,] -1 1.666667

Reference: Multivariate Statistics with R by Paul J. Hewson

[^0]: ${ }^{7}$ Another way to compute this is to use sqrt(t(a) \%*\% a)

[^1]: ${ }^{11}$ Dimesion of B is 2×5 but dimension of $t(A)$ is 2×5. Thus number of columns in B is not the same as number of columns in $t(A)$

