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Review of univariate normal distribution

We say that Y follows a normal distribution, that is, Y ∼ N(µ, σ2), if
the pdf of Y is

fY(y; µ, σ2) =
1√

2πσ2
exp{− 1

2σ2 (y− µ)2}, −∞ < y < ∞.

We can show that E(Y) = µ and Var(Y) = σ2. PDF and CDF of
normal distribution N(µ, σ2) for different values of µ and σ2 are
shown in Figure 1.
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CDF of Normal distribution Figure 1: Normal PDF (left panel) and
CDF (right panel) for various choices
for mean and variance.

Some properties

There are some basic properties of normal distribution:

• Standard Normal Distribution: Z ∼ N(0, 1). Any normal random
variable Y ∼ N(µ, σ2) can be standardized using

Z = σ−1(Y− µ).

• The function φ(·) is often used to denote the pdf of the standard
normal distribution:

φ(t) = (
√

2π)−1e−t2/2.
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Figure 2: Normal CDF and quantiles

• The function Φ(·) is often used to denote the cdf of the standard
normal (no closed form)

Φ(z) = P(Z ≤ z) =
∫ z

−∞
(
√

2π)−1e−t2/2dt.

If for some value zp, we have Φ(zp) = p, then zp is called the p-
quantile of the standard normal distribution. For example, the area
of shaded region in Figure 2 is 0.4; this corresponds to Φ(-0.253).
Thus -0.253 is the 0.4-quantile.

Applied Multivariate and Longitudinal Data Analysis Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 437/537 multivariate normal distribution 3

• Any normal distribution can be created from a standard normal
distribution using Y = µ + Zσ. Specifically, if Z ∼ N(0, 1) then
µ + Zσ ∼ N(µ, σ2).

• Each interval has an associated probality, see Figure 3 for some
examples.
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Figure 3: Normal PDF and associated
probabilities

R functions

R requires that you specify the mean and standard deviation, rather
than mean and variance. The R functions related to normal distribu-
tion are

(a) PDF: dnorm(x, mean, sd, log = FALSE)
(b) CDF: pnorm(q, mean, sd, lower.tail = TRUE, log.p = FALSE)
(c) Quantiles: qnorm(p, mean, sd, lower.tail = TRUE, log.p = FALSE)
(d) Random number: rnorm(n, mean, sd)

Here the arguments are:

• x, q: the value at which to compute the probability PMF of CDF
• mean: mean µ

• sd: standard deviation σ

• p: probability, it must be between 0 and 1

• n: the number of times to repeat the experiment.
• log, log.p: logical; if TRUE, probabilities p are given as log(p).
• lower.tail: logical; if TRUE (default), probabilities are P[Y ≤ x],

otherwise, P[Y > x].

Assessing univariate normality

We can use graphical as well as hypothesis testing techniques to
assess wheather the normality assumption is reasonable for a dataset.
A common graphical technique to check for normality is to create a
normal quantile-quantile plot (Q-Q plot).

Normal quantile-quantile plot

A scatterplot of the sorted data, x(1) ≤ . . . ≤ x(n), against nor-
mal quantiles, Φ−1{(1− 0.5)/n}, . . . , Φ−1{(n− 0.5)/n}.

If this plot shows a linear pattern, then assumption of normalty is
supported.1 1 We can actually create Q-Q plots for

any distribution. We just need to use the
quantiles of that distribution instead of
normal.

Let us consider the sepal length of setosa flowers, and create a
normal Q-Q plot. We can use the qqnorm() function in R.
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# Extract only sepal.length of setosa flowers

SL <- iris$Sepal.Length[1:50]

# Q-Q plot to assess normality

qqnorm(SL, pch = 19)
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Figure 4: Normal Q-Q plot of sepal
length of setosa flowers.

Note that the theoretical quantiles of a N(0, 1) distribution are
ploted in the x-axis. Since the plot is fairly linear, normality assump-
tion seems reasonable in this case.

We can also employ formal statistical tests to check for normality.

• Shapiro-Wilks test, and Shapiro–Francia test: the later test is a
simplification of the former; they show similar power to each
other. These two are among the more powerful normality tests.

• Kolmogorov-Smirnov (K-S) test, and Lilliefors corrected K-S test:
the later test is usually preferred among the two tests.

• Cramer von Mises test, and Anderson-Darling test (a modifica-
tion of the CVM test): based on weighted difference between the
empirical and theoretical CDFs.

• Person’s Chi-squared test: a goodness-of-fit test, not highly recom-
mended for continuous distributions.

• Jarque-Bera test and D’Agostino-Pearson omnibus tests: moment
based tests.

The [nortest] package in R implements a few of the tests men-
tioned above. Overall, Shapiro-Wilk test shows a robust performance
against a wide variety of alternatives.2 We can use the function 2 See the article [Yap and Sim (2011).

Comparisons of various types of nor-
mality tests] for a numerical compari-
son between various tests.

shapiro.test() to perform this test.

shapiro.test(SL)

##

## Shapiro-Wilk normality test

##

## data: SL

## W = 0.9777, p-value = 0.4595

Since the p-value is large (e.g., larger than 5%), we can say that
normality assumption for the data is pausible.
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Bivariate and Multivariate normal distributions

The random vector X2×1 = (X1, X2)
T follows a bivariate normal

(Gaussian) distribution with mean vector µ = (µ1, µ2)
T and variance-

covariance (positive definite) matrix Σ and denoted as X ∼ N2(µ, Σ)

if its probability density function is3 3 Recall the PDF of univariate normal
distribution, N(µ, σ2) is

fY(y; µ, σ2) =
1√

2πσ2
exp{− 1

2σ2 (y−µ)2}
f (x) = (2π)−1|Σ|−1/2 exp{−(x− µ)TΣ−1(x− µ)/2}.
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The shape of the PDF (and that of the scatterplot of a random
sample generated from the distribution) is determined by Σ, the
variance-covariance matrix of X. An easy was to visualize the PDF
of a bivariate distribution is to plot the constant probability density
contours.

Constant probability density contours

We define the constant probability density contour (also called
constant-density contour) of a bivariate normal PDF to be the
set of vectors x such that f (x) is constant, that is,

{x : (x− µ)TΣ−1(x− µ) = c}

for a specific c. These sets are ellipses that are centered around
µ, and the major and minor axes are c

√
λiei, where λi are the

eigenvalues and ei are the corresponding eigenvectors of Σ.

More generally, a random vector X = (X1, . . . , Xp)T is said for
follow a multivariate normal distribution Np(µ, Σ), where µ is a p× 1
vector and Σ is positive definite matrix, if the PDF of X is

f (x) = (2π)−p/2|Σ|−1/2 exp{−(x− µ)TΣ−1(x− µ)/2}.

We can show that E(X) = µ and that cov(X) = Σ.
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PDF of a bivariate normal distribution
 v(x1) = v(x2) = 1, cov(x1,x2) = 0
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Figure 5: PDF and contours of a bivari-
ate normal distribution with v(x1) =
v(x2) = 1, cov(x1,x2) = 0
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Figure 6: PDF and contours of a bivari-
ate normal distribution with v(x1) = 1,
v(x2) = 0.7, cov(x1,x2) = 0.5
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Figure 7: PDF and contours of a bivari-
ate normal distribution with v(x1) = 1,
v(x2) = 1.3, cov(x1,x2) = -0.5
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Some properties of the multivariate normal distribution

• The constant probability density contours are ellipsoids

• Zero covariance implies the compoments of X are independent
(ONLY when X is multivariate normal)

• When µ = 0p and Σ = Ip, we say that we have a standard multi-
variate normal distribution, Z ∼ Np(0p, Ip).4 4 Compare with univariate standard

normal distribution: Z ∼ N(0, 1).
• All subsets of X also follow multivariate normal distribution.

• If X follows a multivariate normal distribution, then any linear
combination of X follow multivariate normal distribution. Specif-
ically, if X ∼ Np(µ, Σ), then AX ∼ Nq(Aµ, AΣAT) for any matrix
A.

• (X − µ)TΣ−1(X − µ) ∼ χ2
p, where χ2

p is the chi-square distribution
with p degrees of freedom.5 5 Recall that in the univariate case, if

X ∼ N(µ, σ2), then

(X− µ)2/σ2 ∼ χ2
1.Mahalanobis distance

The quantity
d2 = (x− µ)TΣ−1(x− µ)

is called the Mahalanobis squared distance between x and µ.
Using the last property, we can compute the probability observing

data within any constant-density contours. Specifically, consider the
constant-density ellipse Ec = {x : (x− µ)TΣ−1(x− µ) = c}, c > 0.
Then

Pr(X ∈ Ec) = Gp(c),

where Gp(c) is the CDF of a χ2
p distribution. Figure 8 shows 50% and

90% contours below for two bivariate normal distributions.
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Figure 8: Constant probability density
contours (blue:0.50 and red:0.90) for
two bivariate normal distributions.
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Sampling distribution of X̄ and S

Recall that for univariate normal distribution, if X1, . . . , Xn form a
random sample from N(µ, σ2), then

X̄ ∼ N(µ, σ2/n), and
n− 1

σ2 S2 ∼ χ2
n−1,

where S2 is the sample variance. We also know that

X̄ and S2 are independent.

We have similar results for multivariare normal distribution.

Exact distribution of X̄ and S

Suppose X1, . . . , Xn form a random sample from a Np(µ, Σ)

distribution. Then

• X̄ has a Np(µ, Σ/n) distribution.
• (n − 1)S has a Wishart distribution with n − 1 degrees of

freedom (a generalization of χ2 distribution).
• X̄ and S are independent.

Large sample results analogous to univariate normal also exist.
Recall that if X1, . . . , Xn form a random sample from N(µ, σ2), then
Central Limit Theorem (CLT) says when n is large enough

X̄ approximately has a N(µ, σ2/n) distribution.

Similar results hold for multivariate normal distribution.

Large sample results

Suppose X1, . . . , Xn form a random sample from a population
(can be different from normal) with mean µ and covariance
matrix Σ. When the sample size n is large,

• X̄ has an approximate Np(µ, Σ/n) distribution (multivariate
CLT).

• (X − µ)TS−1(X − µ) has an approximate χ2
p distribution (also

need n− p large; note that we replaced Σ with S).

Applied Multivariate and Longitudinal Data Analysis Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu
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Checking multivariate normality

Many of the techniques typically used in multivariate statistics as-
sume that the parent distribution is multivariate normal or that the
sample size sufficiently large (in which case the normality assump-
tion is less crucial). However, the quality of the inferences relies on
how close the parent distribution is to the multivariate normal. Thus
it is essential to validate the normality assumption.

It is difficult to assess multivariate normality. In practice, we in-
vestigate the univariate and bivariate distributions to determine how
close they are to normality. We describe a few steps for checking
multivariate normality below.

Check univariate normality

Usual univariate analysis for each variable, such as normal Q-Q
plot and statistical tests for normality can be done. Recall, if X is
multivariate normal, then each component is univariate normal as
well. If we reject normality for one of the variables, then X can not be
multivariate normal.

Let us consider the lumber stiffness dataset6 where four measures 6 Table 4.3 in Johnson and Wichern
(2007). Applied Multivariate Analysis.;
provided in the course webpage.

of stiffness x1, . . . , x4 are measured of each of the n = 30 boards.

# Reading the data set

dat <- read.table("data/T4-3.DAT", header = F)

colnames(dat) <- c("x1", "x2", "x3", "x4", "d2")

# Dimensions of the dataset

n <- nrow(dat)

p <- ncol(dat) - 1

# snapshot

head(dat)

## x1 x2 x3 x4 d2

## 1 1889 1651 1561 1778 0.60

## 2 2403 2048 2087 2197 5.48

## 3 2119 1700 1815 2222 7.62

## 4 1645 1627 1110 1533 5.21

## 5 1976 1916 1614 1883 1.40

## 6 1712 1712 1439 1546 2.22

The first four columns provide the four maesured variables. Let us
construct their relative frequency histograms (Figure 9) and normal
Q-Q plots (Figure 10).

Applied Multivariate and Longitudinal Data Analysis Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu
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par(mfrow = c(2, 2))

for (ii in 1:4) {

hist(dat[, ii], probability = T, xlab = paste("x",

ii, sep = ""), main = paste0("Histogram of x",

ii))

}
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Figure 9: Relative frequency histograms
of the four measures of stiffness.

par(mfrow = c(2, 2))

for (ii in 1:4) {

qqnorm(dat[, ii], main = paste0("Q-Q plot of x",

ii), pch = 19, cex = 1.5)

}
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Figure 10: Normal Q-Q plot of the four
measures of stiffness.

These marginal distributions appear somewhat close to normal.
However, it seems there might be outliers; notice the point in the
upper-right corner of the Q-Q plots.

In general, just checking univariate plots is not enough. Even if
individual variables are normally distributed, their joint distribution
may not be multivariate normal.

Check scatterplots

If the data indeed are generated from a normal distribution, the
constant-density contours must be ellipses. Thus, the scatterplots
should also conform to this structure. Creating scatterplots and
pairs-plot (pairwise scatterplots) of the variables will also reveal
any unusual shape (or outliers) in the data set.

The R function pairs() can be used to create pairwise scatterplots.
The pairs-plot of the dataset is shown in Figure 11

pairs(dat[, 1:4], pch = 19)
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Figure 11: Pairs-plot of the four mea-
sures of stiffness.

Overlaying “data ellipses” (constant-density contours estimated
from the data assuming normality) on top of scatterplots are useful
in this situation. The data ellipses can be drwan using the dataEllipse

function in the car package. Figure 12 shows the 50% and 90% data
ellipses overlayed on the scatter plot of X2 vs. X1.

library(car)

# define x1 and x2

x1 <- dat[, 1]

x2 <- dat[, 2]

# Draw data ellipses

Applied Multivariate and Longitudinal Data Analysis Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu
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dataEllipse(x1, x2, xlim = c(1000, 3500), ylim = c(800,

3000), pch = 19, col = c("steelblue", "#990000"),

lty = 2, ellipse.label = c(0.5, 0.95), levels = c(0.5,

0.95), fill = TRUE, fill.alpha = 0.1)
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Figure 12: Scatterplot of X2 against X1

with overlayed data ellipses.

By default, the 50% and 95% ellipses are drawn. See the documen-
tation using ?dataEllipse for more customization options. We can
see from Figure 12 that the data cloud does have an elliptical shape.
However, there is one point that might be an outlier.

Check bivariate distributions

We can also estimate the PDF of each pair of variables. This can
be done using the bkde2D() function in the KernSmooth package.
Visualization can be done using persp() and contour() functions.
Figures 13 and 14 show the estimated density funtion and a contour
plot of the estimated density, respectively.

library("KernSmooth")

# Estimate bivariate density

den.est <- bkde2D(dat[, 1:2], bandwidth = apply(dat[,

1:2], 2, dpik))

persp(x = den.est$x1, y = den.est$x2, z = den.est$fhat,

xlab = "x1", ylab = "x2", zlab = "density",

phi = 45, theta = 30, ticktype = "detailed",

main = "Estimated PDF of (X1, X2)")
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Figure 13: Estimated bivariate density
function of X1 and X2

# Contour plot of the estimated density

plot(dat[, 1:2], xlab = "x1", ylab = "x2", pch = 19,

main = "Contour plot of the estimated PDF")

contour(x = den.est$x1, y = den.est$x2, z = den.est$fhat,

add = TRUE, col = "#990000")
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Figure 14: Contour plot of estimated
bivariate density function of X1 and X2

Construct a chi-square plot

Given sample data x1, . . . , xn, the chi-square plot is constructed using
the following steps:

• For each i, compute the Mahalanobis squared distance

d2
i = (xi − x̄)Ts−1(xi − x̄),

where x̄ and s are observed values of the sample mean and covari-
ance matrix, respectively.
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• If the data are indeed generted from a normal distribution, then
the d2

i values should follow a χ2
p (in our example, p = 4) distribu-

tion. Thus, we plot the ordered d2
i values,

d2
(1) ≤ . . . ≤ d2

n

against the theoretical quantiles of the χ2
p distribution

qp(
1− 0.5

n
), . . . , qp(

n− 0.5
n

).

If the multivariate normality assumption is correct, then the points
should follow a straight line. A systematic curved pattern will sug-
gest a departure from normality. One or two points that show large
deviations from the linear trend might be outliers and would warrant
further investigation.

A function to create such a chi-square plot is shown below.

# A function to create a chi-square plot

chisquare.plot <- function(x, mark) {

# x= a n x p data matrix, mark: number of

# extreme points to mark

# p=number of variables, n=sample size

p <- ncol(x)

n <- nrow(x)

# xbar and s

xbar <- colMeans(x)

s <- cov(x)

# Mahalanobis dist, sorted

x.cen <- scale(x, center = T, scale = F)

d2 <- diag(x.cen %*% solve(s) %*% t(x.cen))

sortd <- sort(d2)

# chi-sq quantiles

qchi <- qchisq((1:n - 0.5)/n, df = p)

# plot, mark points with heighest distance

plot(qchi, sortd, pch = 19, xlab = "Chi-square quantiles",

ylab = "Mahalanobis squared distances",

main = "Chi-square Q-Q Plot")

points(qchi[(n - mark + 1):n], sortd[(n -

mark + 1):n], cex = 3, col = "#990000")

}

Applied Multivariate and Longitudinal Data Analysis Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu
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Figure 15 shows a chi-square plot for the dataset.

# Call the function; mark two top points

chisquare.plot(x = dat[, 1:4], mark = 2)
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Figure 15: Chi-square plot for the
stiffness dataset.

It seems, for the most part, the chi-square plot indeed shows a linear
pattern. However, there are one or two points (upper right corner;
marked by red circles) show deviation from the linear trend. These
points may indicate that there are outliers.

Outlier detection

Outliers can be viewed as unusual data points that do not seem to
follow the pattern of variability produced by other observations. Uni-
variate outliers can be detected using a dot plot or boxplot. However,
it might be more complicated for multivariate data. The chi-square
plot describes above can also be used for outlier detection.

In case that there are suspected outliers, we should inspect the
data points corresponding to the top few distance values. We would
like to see in what manner the outliers differ from the rest of the
dataset. Thus, along with the actual data points, it is also useful to
inspect the z-scores for each variable. Recall that, if the assumption
of multivariate normality is reasonable, then z-scores of each variable
should follow a standard normal distribution. We expect roughly7 7 We know that

P[−2.57 ≤ Z ≤ 2.57] ≈ 0.99.99% of the z-score values should fall in the interval [−2.57, 2.57].
Thus any z-scores outside the interval above can be considered un-
usual.

The following table shows data rows with largest Mahalanobis
distance values, along with z-scores of each variable.

x1 x2 x3 x4 z1 z2 z3 z4 d2 ID

1954 2149 1180 1281 0.15 1.25 -1.09 -1.38 16.85 16

2983 2794 2412 2581 3.31 3.28 2.98 2.65 12.26 9

2276 2189 1547 2111 1.14 1.38 0.12 1.2 9.9 21

2119 1700 1815 2222 0.66 -0.16 1.01 1.54 7.62 3

2326 2301 2065 2234 1.29 1.73 1.83 1.58 6.28 29

2403 2048 2087 2197 1.53 0.94 1.91 1.46 5.48 2

Table 1: Data rows with largest Maha-
lanobis distance values.

It seems that observations 16 and 9 are outliers for different reasons.
Observation 16 has the highest Mahalanobis distance; however, the
z-scores of the individual variables are well within the usual range of
[−2.57, 2.57]. This type of outliers are quite difficult to detect visually.
For example, a scatterplot of X1 and X2 in Figure 16. However, ob-
servation 16 is hidden within the data cloud and is only visible in the
chi-square plot.
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Figure 16: Scatterplot of X1 and X2 with
marked outliers (red circles).

In contrast, observation 9 is easy to notice since it is visible in
scatterplots as well. This is because even though the observation
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follows the overall pattern on the plot (there seems to be a linear
relationship between X1 and X2, and observation 9 does conform to
the relationship), the z-scores are very large in magnitude for all the
four measures of stiffness.

Once we find an outlier, we must try to access the real specimens
and re-examine them whenever possible to determine the reason
behind the unusual observations.

Bivariate boxplot

We discuss two extensions of the univariate boxplot to the bivariate
situation. A bivariare analogue of the usual boxplot is proposed
by Goldberg and Iglewicz (1992).8 The bvbox() function in the MVA 8 Goldberg and Iglewicz (1992). Bi-

variate Extensions of the Boxplot,
Technometrics, 34:3, 307-320.

package implements this method.
Let us look at the variables x1 and x2 from the lumber stiffnes data

discussed before. A bivariate boxplot is shown in Figure 17.

library(MVA)

bvbox(dat[, 1:2], pch = 19, col = "#990000", xlab = "x1",

ylab = "x2", main = "Bivariate boxplot")

text(dat[c(9, 16), 1], dat[c(9, 16), 2], pos = 1,

labels = c(9, 16))
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Figure 17: Bivariate boxplot of X1 and
X2.

The bivariate boxplot consists of the following:

• Two concentric ellipses, the inner ellipse (called the “hinge”) con-
tains 50% of the data, and the outer ellipse (called the “fence”)
determines potential outliers. These ellipses are drawn based on
robust measures of location, scale, and correlation, and a constant,
D, that determines the distance of the fence from the hinge. Gold-
berg and Iglewicz (1992) propose to use D = 7 so that the outer
ellipse forms an approximate 99% confidence bound.

• Resistant (robust) regression lines of both y on x and x on y are
drawn. Their intersection shows the location estimator.

It seems observation 9 is an outlier. However, observation 16 is on the
fence.

Bagplot

Another bivariate extension of the usual boxplot, called bagplot,
has been suggested by Rousseeuw, Ruts and Tukey (1999).9 The 9 Rousseeuw, Ruts and Tukey (1999).

The Bagplot: A Bivariate Boxplot, The
American Statistician, 53:4, 382-387.

bagplot() function in the aplpack package implements this method.
Figure 18 shows a bagplot of X1 and X2.
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# Example of a Bagplot

library(aplpack)

bagplot(dat[, 1], dat[, 2], xlab = "x1", ylab = "x2",

main = "Bagplot", pch = 19, cex = 1)

text(dat[c(9, 16), 1], dat[c(9, 16), 2], pos = 1,

labels = c(9, 16))
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Figure 18: Bagplot of X1 and X2.

The bagplot is based on the concept of halfspace location depth of
a point relative to a bivariate dataset, which extends the univariate
concept of rank. The plot consists of the following:

• An inner convex polygon, called the “bag,” containing 50% of the
data points (with the largest depth).

• The outer polygon, called the “fence” is created by magnifying the
bag by a factor of three. The fence separates inliers from outliers.
The fence is not plotted, but the outliers are plotted in red. The
observations between the bag and the fence are shown using a
lighter color.

The bagplot visualizes the location, spread, correlation, skewness,
and tails of the data. It is not limited to elliptical (e.g., multivariate
normal) distributions.

Steps to detect outliers

Johnson and Wichern (2007)10 suggests the following steps for detect- 10 Applied multivariate statistical
analysis by Richard A. Johnson, Dean
W. Wichern. Prentice-Hall.

ing outliers:

• Construct dotplot/boxplot/qqplot of each variable

• Make scatterplots for each pair of variables

• Calculate standardized values for each variable

zk =
xk − x̄k√

s2
k

.

Examine the standardized values for extreme points. This depends
of the sample size as well as number of variables. Even if the data
came from a normal distribution, we can expect 1% absolute val-
ues of the z-scores to exceed 2.57.

• Calculate the Mahalanobis squared distances (xi − x̄)Ts−1(xi − x̄)
and create chi-square plot. Examine the points with unusually
large distance values.

We reiterate that that once we find an outlier, we must try to ac-
cess the real specimens and re-examine them whenever possible to
determine the reason behind the unusual observations.
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