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Review of univariate framework

Consider the iris data in R.1 For simplicity, let us only consider the 1 Source: Fisher, R. A. (1936) The use of
multiple measurements in taxonomic
problems. Annals of Eugenics, 7, Part
II, 179-188.

setosa species and the Sepal.length variable. Suppose we want to
estimate the mean sepal.length of the setosa flower. Such a statistical
problem has four main components. Sepal.Length
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Figure 1: Histogram of Sepal.length in
the iris dataset for setosa species.

(1) Population: A group of individuals/objects/items of interest. In
our example, the population consists of all setosa flowers.

(2) Parameter: A summary of the population. In our case, the pa-
rameter is the true mean of the sepal length of all setosa flowers.

(3) Sample: A subset of the population. Naturally, it is often im-
possible to observe data on the whole population due to time/re-
source constraints. Thus, we usually collect data on a subset of the
population. In our example, the sample consists of measurements
on 50 setosa flowers.

(4) Statistic: A summary computed from a sample. We use such
summaries to estimate the unknown parameter. In our case, we
estimate the population mean by the sample mean.

We denote a hypothetical sample of size n as a collection of ran-
dom variables X1, X2, . . . , Xn, where Xi denotes the sepal length of
i-th flower. A common assumption is that the population mean (true
mean sepal length) is µ and the population variance is σ2. In general,
we assume that X1, . . . , Xn form a random sample.

Random sample

The collection of random variables, X1, . . . , Xn, is called a ran-
dom sample of size n if X1, . . . , Xn are independent and each Xi

has the same distribution.

Thus we have

E(Xi) = µ and var(Xi) = σ2 for all i.

Since we want to know about the population mean µ, a natural way
to estimate this is to use the sample mean

X̄ = (X1 + . . . + Xn)/n.

Specifically, we call X̄ an estimator of µ.2 2 Note that we do not need actual
numeric data to define a reasonable
estimator.Estimator

An estimator is a formula/rule that one can apply to any possible
sample. It does not depend on the true value of the parameter.
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Now we consider the actual sample (observed numeric data) at
hand. We have 50 observations (values taken from the iris dataset):3 3 Notice that we used lower case letters

(e.g., xi) to denote the observed data
but upper case letters (e.g., Xi) to
denote random varibles. We will use
this convention throughout this course
to differtiate between random variables
and observed (numeric) values of
the random variables in a particular
sample.

x1 = 5.1, x2 = 4.9, . . . , x50 = 5.

Thus the observed value of the sample mean for this sample is

x̄ = 5.006.

The specific value x̄ = 5.006 is called an estimate of µ.

Estimate

An estimate is a numeric value that is obtained by applying an
estimator to a specific sample at hand.

An estimate alone does not give us any indication of how reliable
it is. Typically, along with the estimate, one also reports the standard
error of the estimate.

Standard error

Standard error of an estimator is defined as

SE(Estimator) =
√

var(Estimator).

In our case, the estimator is X̄. The standard error of X̄ is com-
puted as4 4 Recall that

var(X̄) = var[ 1
n (X1 + . . . + Xn)]

= 1
n2 [var(X1) + . . . + var(Xn)]

= 1
n2 [nσ2] = σ2/n

SE(X̄) =
√

var(X̄) =
√

σ2/n.

Notice that SE(X̄) depends on σ2, the unknown population variance.
In practice, we estimate the population variance σ2 by the observed
sample variance s2.5 Thus the estimated standard error is 5 An estimator of σ2 is

S2 =
1

n − 1

n

∑
i=1

(Xi − X̄)2.

The corresponding estimate is the
sample variance

s2 =
1

n − 1

n

∑
i=1

(xi − x̄)2.

ŜE(X̄) =
√

s2/n.

In R, we can compute the estimate and its standard error as fol-
lows.

# A snapshot of iris data

head(iris)

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## 1 5.1 3.5 1.4 0.2 setosa

## 2 4.9 3.0 1.4 0.2 setosa

## 3 4.7 3.2 1.3 0.2 setosa

## 4 4.6 3.1 1.5 0.2 setosa

## 5 5.0 3.6 1.4 0.2 setosa

## 6 5.4 3.9 1.7 0.4 setosa
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# Get the species only take the setosa flowers and extract

# only sepal.length (the first column)

species <- iris$Species

SL <- iris[species == "setosa", 1]

# sample size, Sample mean, Sample variance

n <- length(SL)

xbar.SL <- mean(SL)

s2.SL <- var(SL)

# Standard error of xbar

SE <- sqrt(s2.SL/n)

# output

out <- c(xbar.SL, SE)

names(out) <- c("Mean.SL", "SE")

out

## Mean.SL SE

## 5.00600000 0.04984957
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Random vector and sample mean

Let us now consider the multivariate problem: estimate the mean of
all the four variables: Sepal.Length, Sepal.Width, Petal.Length, and
Petal.Width for the setosa flowers.

The basic framework presented in the last section remains the
same; however, now we have four measurements for each flower:

sepal length
sepal width
petal length
petal width

 =


SL
SW
PL
PW

 .

So each observation is not a scalar random variable; instead each
observation is a random vector.

Random vector

The vector Xp×1 = (X1, . . . , Xp)T is called a random vector if
each element Xi is a random variable.

In our particular example, p = 4. So our random sample in this
case consists of the following random vectors:6 6 Recall that be default we take vectors

as column vectors.

X1 =


sepal length of 1st flower
sepal width of 1st flower
petal length of 1st flower
petal width of 1st flower

 =


SL1

SW1

PL1

PW1

 , . . . , Xn =


SLn

SWn

PLn

PWn

 .

Our parameter of interest is the mean vector

µ = E(X) =


E(SL)
E(SW)

E(PL)
E(PW)

 =


µSL

µSW

µPL

µPW

 ,

where µSL = population mean of sepal length, µSW = population
mean of sepal width, and so on. Thus the parameter is a 4 × 1 vector.

Similar to the univariate case, the estimator of the vector µ is the
sample mean.

Sample mean

Given a set of random vectors X1, . . . , Xn, the sample mean is
defined as

X̄ =
1
n
(X1 + . . . + Xn) =

1
n

n

∑
i=1

Xi.
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The observed sample (numeric data for our particular sample) are

x1 =


5.1
3.5
1.4
0.2

 , . . . , x50 =


5

3.3
1.4
0.2

 .

Thus the estimate of µ is

x̄ =
1
n
(x1 + . . . + xn).

In R we can compute this estimate as follows:7 7 The colMeans function computes mean
of each column. Can you do this using
apply? Using sweep?setosa <- iris[species == "setosa", 1:4]

head(setosa)

## Sepal.Length Sepal.Width Petal.Length Petal.Width

## 1 5.1 3.5 1.4 0.2

## 2 4.9 3.0 1.4 0.2

## 3 4.7 3.2 1.3 0.2

## 4 4.6 3.1 1.5 0.2

## 5 5.0 3.6 1.4 0.2

## 6 5.4 3.9 1.7 0.4

xbar <- colMeans(setosa)

xbar

## Sepal.Length Sepal.Width Petal.Length Petal.Width

## 5.006 3.428 1.462 0.246

How to quantify the variability in X̄?8 To understand this, we 8 In other words, how to define a
concept like “standard error” in this
case?

need quantify the variability of a random vector. This is done by
computing the variance-covariance matrix.

Variance-covariance matrix

Let us first discuss the concept of covariance between two scalar random
variables. Suppose X1 and X2 are two scalar random variables. One
way to measure the degree of linear relationship between X1 and X2 is
to compute the covariance between them.

Covariance

We define the covariance between two random variables X1

and X2 as

cov(X1, X2) = E[(X1 − µ1)(X2 − µ2)] = E(X1X2)− µ1µ2,

where µ1 = E(X1) and µ2 = E(X2).
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Covariance measures the strength of linear relationship between
X1 and X2. The quantity cov(X1, X2) takes positive values if larger
values of X1 pair with larger values of X2, and takes negative if larger
values of X1 pair with smaller values of X2. Zero or “small” values
of covariance indicate that there is no linear relationship (i.e., slope is
zero) between X1 and X2.
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Figure 2: Examples of positive, negative
and near zero covariance

Notice that each if the random variable also has its own variance,
that is, var(X1) and V(X2). Thus to get a complete picture of variabil-
ity of X1 and X2, we need to look at all these quantities:

var(X1), var(X2), and cov(X1, X2).

Clearly, as the number of variables increases, the number of such
quantities increases as well.

In the multivariate world, there is a nice way to summarize the
variability of a set of random variables using matrices. Let us con-
sider a random vector

X =

(
X1

X2

)
.

The “variability” of X can be summarized by the 2 × 2 matrix

Σ = cov(X) =

(
var(X1) cov(X1, X2)

cov(X2, X1) var(X2)

)
.

This matrix is called the variance-covariance matrix of X.9 9 Notice that Σ is symmetric since
cov(X1, X2) = cov(X2, X1).Variance-covariance matrix

Suppose we have a p × 1 random vector X = (X1, . . . , Xp)T .
The variance-covariance matrix of X is defined as the follow-
ing p × p matrix:

Σ = cov(X) =


var(X1) cov(X1, X2) . . . cov(X1, Xp)

cov(X2, X1) var(X2) . . . cov(X2, Xp)
...

...
. . .

...
cov(Xp, X1) cov(Xp, X2) . . . var(Xp)

 .

Typically, the population variance-covariance matrix is unknown.
We can estimate Σ by the sample variance-covariance matrix, denoted by
S.
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Sample covariance matrix

Given a random sample X1, . . . , Xn, the sample covariance is

S =
1

n − 1

n

∑
i=1

(Xi − X̄)(Xi − X̄)T .

Here S is an estimator of Σ. Given a numeric sample x1, . . . , xn,
the corresponding estimate is

1
n − 1

n

∑
i=1

(xi − x̄)(xi − x̄)T .

In R, we can compute sample covariance matrix directly by us-
ing the formula above or using the cov() function. In our specific
example, we can compute S as below (rounded to 3 decimal places).

setosa <- iris[species == "setosa", 1:4]

colnames(setosa) <- c("SL", "SW", "PL", "PW")

S <- cov(setosa)

# Rounded to 3 digits

round(S, 3)

## SL SW PL PW

## SL 0.124 0.099 0.016 0.010

## SW 0.099 0.144 0.012 0.009

## PL 0.016 0.012 0.030 0.006

## PW 0.010 0.009 0.006 0.011

Much like the univariate case, we can compute

cov(X̄) = Σ/n,

and we can estimate this quantity by replacing Σ by its estimator S,

ĉov(X̄) = S/n.

In our example, we estimate cov(X̄) as follows.

# Sample size (number of setosa flowers)

n <- nrow(setosa)

# S/n, rounded to 5 digits

round(S/n, 5)

## SL SW PL PW

## SL 0.00248 0.00198 0.00033 0.00021

## SW 0.00198 0.00287 0.00023 0.00019

## PL 0.00033 0.00023 0.00060 0.00012

## PW 0.00021 0.00019 0.00012 0.00022

Applied Multivariate and Longitudinal Data Analysis Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 437/537 multivariate summary statistics 9

Linear combination of variables

Given a random vector, X = (X1, . . . , Xp)T , often we are interested in
weighted sums of the random variables. Such sums are called linear
combinations.

Linear combination

A linear combination of a collection of random variables
X1, . . . , Xp, is defined as

a1X1 + a2X2 + . . . + apXp,

where a1, . . . , ap are constants.
Define the vector of constants a = (a1, . . . , ap)T and the ran-
dom vector X = (X1, . . . , Xp)T . Then the linear combination
can be written as

a1X1 + a2X2 + . . . + apXp = aTX.

One linear combination

Using the iris data, suppose we want to estimate the difference
between mean sepal length and mean sepal width for the setosa
flowers. In this case, we are interested in the parameter µSL − µSW .10 10 Recall that our random vector is

X =


SL
SW
PL
PW

 .

Thus we can write

µSL − µSW = E(SL)− E(SW) = E(SL − SW) = E(aTX) = aTµ,

where a = (1,−1, 0, 0)T . So here we are interested in estimating the
mean of a linear combination.

To estimate this parameter, we first calculate the differences11 11 Recall that our random sample is

X1 =


SL1
SW1
PL1
PW1

 , . . . , Xn =


SLn
SWn
PLn
PWn

 .
D1 = SL1 − SW1 = aTX1, . . . , Dn = SLn − SWn = aTXn.

So an estimator of µSL − µSW is12

12 Recall, estimator of µ is

X̄ =


SL
SW
PL
PW

 .

D̄ =
1
n ∑

i
Di =

1
n ∑

i
(SLi − SWi) = SL − SW = aTX̄.

The estimator above is expected since we can estimate µSL by SL and
µSW by SW. So it is natural to estimate µSL − µSW by SL − SW.

To compute the variance of the estimator, we notice

var(D̄) =
var(SL − SW)

n
=

var(SL) + var(SW)− 2cov(SL, SW)

n
Note that the terms var(SL), var(SW) and cov(SL, SW) are from the
population covariance matrix Σ. It can be shown that in this case

var(D̄) = aTΣa/n.
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General result

If Y is a random vector with mean vector µ and variance co-
variance matrix ΣY , and a is a vector, then

E(aTY) = aTµ and var(aTY) = aTΣY a.

This result does not depend of the distribution of Y .

In our particular case, we want to estimate aTµ, and our estimator
is aTX̄. We know that cov(X̄) = Σ/n. So we can verify that

var(aTX̄) = aTcov(X̄)a = aTΣa/n.

Since we do not know Σ, we replace Σ by S.
Using R, we can compute the estimates as below.13 13 We have already computed xbar and

S in previous sections.

# Define the coefficient/contrast vector a

a <- c(1, -1, 0, 0)

a

## [1] 1 -1 0 0

# Estimate a^T\mu by a^T X-bar

t(a) %*% xbar

## [,1]

## [1,] 1.578

# Estimate the variance of the estimator

t(a) %*% (S/n) %*% a

## [,1]

## [1,] 0.001390122

Multiple linear combinations

Suppose we want to know how different sepal width, petal length

and petal width are from sepal length on average. Specifically, we
want to estimate  µSW − µSL

µPL − µSL

µPW − µSL

 .

Thus the vector of contrasts can be written as14 14 Recall that our original parameter is
the mean vector

µ =


µSL
µSW
µPL
µPW

 .

 −1 1 0 0
−1 0 1 0
−1 0 0 1




µSL

µSW

µPL

µPW

 = Aµ
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Since X̄ is an estimator of µ, we can simply replace µ in the quan-
tity above by X̄, and say that AX̄ is an estimator of Aµ.

Similar to before, we can compute the variance-covariance matrix
of this estimator as

cov(AX̄) = Acov(X̄)AT = A(Σ/n)AT .

Since Σ is unknown, we can replace Σ by S. In our example, we
demonstrate these results as follows.

# Define the coefficient matrix A

A <- cbind(c(-1, -1, -1), c(1, 0, 0), c(0, 1, 0), c(0, 0, 1))

A

## [,1] [,2] [,3] [,4]

## [1,] -1 1 0 0

## [2,] -1 0 1 0

## [3,] -1 0 0 1

# Estimate A\mu by A X-bar

A %*% xbar

## [,1]

## [1,] -1.578

## [2,] -3.544

## [3,] -4.760

# Estimate the variance-covariance matrix

A %*% (S/n) %*% t(A)

## [,1] [,2] [,3]

## [1,] 0.0013901224 0.0004075102 0.000480000

## [2,] 0.0004075102 0.0024339592 0.002072653

## [3,] 0.0004800000 0.0020726531 0.002293878

Practice

For each of the situations described below, write the parameter and
its estimator using vectors/matrices. Clearly define a or A as appro-
priate.

1. Estimate the average of sepal width and petal width of setosa
flowers.

2. Simultaneously estimate the average of sepal width and length,
and the mean difference of petal width and length of setosa flow-
ers.

Applied Multivariate and Longitudinal Data Analysis Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 437/537 multivariate summary statistics 12

Correlation

A disadvantage of covariance is that it is unbounded, and depends
on the unit of measurement. A better measure of linear relationship
between two random variables X1 and X2 is the correlation coeffi-
cient:

cor(X1, X2) =
cov(X1, X2)√

var(X1)
√

var(X2)
.

Correlation coefficient is bounded between −1 and 1. Large positive
values indicate a strong positive relationship, and vice versa. Small
values indicate absence of no linear relationship. See Figure 3 for an
example.
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Figure 3: Examples of strong positive,
strong negative and near zero correla-
tion

Now suppose we have a random vector X = (X1, . . . , Xp)T . The
correlation matrix of X is

cor(X) =


1 cor(X1, X2) . . . cor(X1, Xp)

cor(X2, X1) 1 . . . cor(X2, Xp)
...

...
. . .

...
cor(Xp, X1) cor(Xp, X2) . . . 1

 .

Note that the diagonal entries are 1 since cor(Xi, Xi) = 1.
Typically, cor(X) is unknown and can be estimated using the sam-

ple by the sample correlation matrix R.
Given sample data, we can use the cor() function to compute R.

# Sample correlation matrix

R <- cor(setosa)

round(R, 3)

## SL SW PL PW

## SL 1.000 0.743 0.267 0.278

## SW 0.743 1.000 0.178 0.233

## PL 0.267 0.178 1.000 0.332

## PW 0.278 0.233 0.332 1.000

Note that the correlation between SL and SW is quite high which
indicates a moderate to strong linear relationship between SL and SW.
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